(58), 91 (32), 80 (23), 79 (80), 77 **(44),** 67 (30). was prepared from 7c in a manner similar to that used for 14a: 60% yield; bp (0.02 torr) 100 °C (bath); ¹H NMR (CCl₄) δ 1.66 (br s, 3 H), 2.30 (s, 3 H), 0.8-3.1 (m, 7 H), 3.27 (br s, 1 H), 3.60 (br s, 1 H); IR (CCl₄) 1708, 1665 cm⁻¹; mass spectrum (70 eV), m/e 165 (M⁺, 62), 164 (54), 137 (58), 122 (loo), 94 [32), 79 (39),77 (20), 53 (21), 44 (47),42 (69), 41 (24), 39 (21).

General Procedure **for** the Alkylation **of** Doubly Activated Esters and Nitriles. To a refluxing suspension of 6 mmol of NaH (hexane washed) in 25 mL of THF was slowly added *5* mmol of active methylene compound. After hydrogen evolution was complete, 6 mmol of **3** was added and the refluxing was continued for 14 h. Upon cooling, the reaction mixture was acidified with dilute aqueous HCI, stirred for 15 min to hydrolyze the enol ether, and extracted with ether. The organic layer was dried over MgS04, filtered, concentrated in vacuo, and purified by bulb-to-bulb distillation. Analytical samples were obtained *by* preparative GC (OVl7). The following alkylated products were obtained.

Diethyl 2-Ethyl-2-(**1-methyl-2-oxopropyl)malonate** (16a):15 71% yield; bp (0.05 torr) 118 "C (bath); 'H NMR (220 MHz, CDC1:3) *ri* 0.90 (t, 3 H), 1.20 (t, 6 H), **1.24** (d, 3 H), 2.02 (q, 2 H), 2.24 (s, 3 H), 3.21 (q, 1 H), 4.21 (q, 4 H); IR (CHCl₃) 1715 cm⁻¹; mass spectrum (70) eV), m/e 258 (M⁺, absent), 213 (25), 187 (72), 170 (35), 142 (43), 141 (77J, 139 (46), 115 (291, 114 *(22),* 97 *(23),* 69 (25), **43** (loo), 29 (53).

Diethyl **2-Ethyl-2-(2-oxobutyl)malonate** (17a): 14% yield; bp $(0.05$ torr) 118 °C (bath); ¹H NMR (220 MHz, CDCl₃) δ 0.64 (t, 3 H), 0.84 (t, 3 H), 1.02 (t, 6 H), 1.82 (q, 2 H), 2.20 (q, 2 H), 2.84 (s, 2 H), 3.98 **(q,** 1 H); IR (neat) 1710 cm-'; mass spectrum (70 eV), *mle* 258 (M+, absent), 187 (24), 141 (36), 139 (34), 127 (22), 83 (20), 57 (73), 55 (31), 29 (loo), 27 (21).

Dimethyl 2-Methyl-2-(**1-methyl-2-oxopropyl)malonate** (16b): 76% yield; bp (0.05 tor:) 120 *"C* (bath); 'H NMR (CDC13) 6 1.20 (d, :3 H), 1.52 (s. 3 H), 2.21 (s, *3* HI, 3.41 (4, 1 H), 3.71 (s, 6 H); IR (neat) 1730 cm⁻¹; mass spectrum (70 eV), m/e 216 (M⁺, 1), 185 (20), 174 (27), 145 (32), 142 (71), 125 (50), 115 (48), 114 (84), 113 (23), 83 (39), 59 (47), 55 (37), 43 (100).

Methyl 2-(**l-Methyl-2-oxopropyl)-2-cyanoacetate** (19):16 48% yield; bp (0.05 torr) 110 °C (bath); ¹H NMR (CDCl₃) δ 1.44 (dd, 3 H), 2.29 (d, 3 H), 3.30 (m, 1 H), 3.83 (s, 3 H), 3.95 (m, 1 H); IR (neat) 2250, 1750,1720 cm-1: mass spectrum (70 eV), *rnle* 169 (M+, 3),68 (7),43 $(100), 28(6), 15(9)$.

Methyl **2-(2-0xobutyl)-2-cyanoacetate** (20): 13% yield; bp (0.05 torr) 110 °C (bath); ¹H NMR (CDCl₃) δ 1.10 (t, 3 H), 2.50 (q, 2 H), 3.1 (d, 2 H), 3.85 (s, 3 H), 4.1 (t, 1 H); IR (CCl₄) 2261, 1752, 1720 cm⁻¹; mass spectrum (70 eV), m/e 169 (M⁺, 5), 140 (7), 138 (9), 112 (27), 80 $(7), 59$ $(6), 57$ $(100), 29$ $(17).$

1-Carbomethoxy-1 **-(l-methyl-2-oxopropyl)cyclohexane** (22). To a solution of 2.6 mmol of LDA (generated in situ) in 10 mL of THF at 0 °C was added 351 mg (2.47 mmol) of carbomethoxycyclohexane. After 0.5 h, 0.50 mL (3.0 mmol) of **3** was added and the mixture was slowly allowed to warm to room temperature. After 12 h, 5 mL of 3 M aqueous acetic acid was added. After an additional 12 h, the reaction mixture was diluted with ether and water. The organic layer was washed with water. dried over MgS04, filtered, and concentrated in vacuo; bulb-to-bulb distillation afforded **456** mg (2.15 mmol, 87%) of the alkylated product $22:$ bp (0.02 torr) 130 °C (bath); ¹H NMR (CCl₄) 6 1.04 (d, 3 H), 0.9-1.8 (m, 10 H), 2.05 (s, 3 H), 2.69 (q, 1 H), 3.66 (s, 3 H); IR (CCl₄) 1734 cm⁻¹; mass spectrum (70 eV), m/e 212 (M⁺, 1), 141 1100). 109 **(44).** 81 144). 72 (29). **43** (601.

3-Methyl-J-cyano-2-hexanone (24). To a solution of 2.4 mmol *Brisbane, Australia* of LDA (generated in situ) in 5 mL of THF at -78 °C was added 0.16 mL (2.0 mmol) of butyronitrile. After 0.5 h, 0.33 mL (2.0 mmol) of 3 in 3 mL of HMPA was added and stirring was continued for an additional 0.5 h. The reaction mixture was slowly warmed to room temperature over the course of 6 h, acidified with dilute aqueous HCI, stirred for 15 min to hydrolyze the enol ether, and diluted with ether and water. The organic layer was separated, washed with water, dried over MgS04, filtered, and concentrated in vacuo. The crude alkylated product was purified by bulb-to-bulb distillation to afford 0.17 g (1.2) mmol, 61%) of products 24, that GC analysis (OV17 at 100 $^{\circ}$ C) and NMR, IR, and mass spectra showed were diastereoisomers, in a ratio of 52:48.

24a: bp *(5* torr) 100 "C (bath); 'H NMR (CC14) 6 1.15 (t, 3 H), 1.30 (d, 3 H), 1.55 (q, 2 H), 2.20 (s, 3 H), 2.6–2.9 (m, 2 H); IR (CHCl₃) 2220, 1712 cm-I; mass spectrum *(70* eV), *mle* 139 (M+, l), 72 (12),68 (lo), **43** (100).

24b: bp (5 torr) 100 °C (bath); ¹H NMR (CCl₄) δ 1.15 (t, 3 H), 1.30 (d, 3 H), 1.55 (q, 2 H), 2.20 (s, 3 H), 2.6-2.9 (m, 2 H); IR (CHCl₃) 2220, 1712 cm-I; mass spectrum (70 eVi, *mle* 139 (M+, l), 82 *(5),* 72 (19), 70 116), 68 (13), 55 (8). 43 (loo), **42** (5), 41 (8).

Acknowledgment. We wish to thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Registry No.-1, 67722-23-0; **3,** 67722-24-1; 4a, 10468-40-3; 4b, 6114-69-8; **4c,** 67722-22-9; 7a, 67722-25-2; 7b, 67722-26-3; 7c, 67722-27-4; Sa, 29943-11-1; 8b, 59574-62-8; 9, 67722-28-5; 14a, 24730-98-1; 14b, 67722-29-6; 14c, 67722-30-9; 15a, 133-13-1; 15b, 609-02-9; 16a, 67722-31-0; 16b, 67722-32-1; 17a, 67722-33-2; 18, 23,109-74-0; 24 isomer 1,67722-37-6; 24 isomer 2, 67722-38-7. 105-34-0; 19,67722-34-3; 20,67722-35-4; 21,4630-82-4; 22,67722-36-5;

References and Notes

- (1) R. M. Jacobson, R. **A.** Raths, and J. H. McDonald, 111, *J. Org.* Chem., 42,2545
- (1977). Recent alternative approaches to cyclopentyl systems include the following:

(a) R. Noyori, K. Yokoyama, S. Makino, and Y. Hayakawa, J. Am. Chem.

Soc., **94**, 1772 (1972); (b) B. M. Trost, Acc. Chem. Res., 7, 85 ((1977); (k) Y. Hayakawa, K. Yokoyama, and R. Noyori, ibid., 100, 1799 (1978).
-
- (3) G. Stork and J. Benaim, *J.* Am. Chem. SOC., 93, 5938 (1971). (4) For other imine alkylations to produce 1,4-diketones, see the following: (a) T. Cuvigny, M. Larcheveque, and H. Normant, *Justus Liebigs Ann. Chem.*, 719 (1975); (b) M. Larcheveque, G. Valette, T. Cuvigny, and H. Normant, *Synthesis, 256* (1975); (c) T. Cuvigny, B. Larcheveque, and H. Normant,
- (1974).
(5) (a) P. Bosshard and C. H. Eugster, *Adv. Heterocycl. Chem.*, 7, 377ff (1966);
(b) U. K. Pandit, H. R. Reus, and K. DeJonge, *Recl. Trav. Chim. Pays-Bas,*
89, 956 (1970).
- (6) (a) C. Pall, *Ber.*, 17, 2756 (1884); (b) L. Knorr, *ibid.*, 17, 2863 (1884); (c) L. A. Paquette, "Principles of Modern Hetrocyclic Chemistry", W. A. Benjamin, New York, N. Y., 1968, p 102ff.
(7) G. Büchi and H. Wuest
-
-
-
-
- (11) M. W. Rathke and **A.** Lindert, *J.* Am. Chem. Soc., 93, 2318 (1971). (12) J. K. Catch, D. F. Elliott, D. H. Hey. and E. R. H. Jones, *J.* Chem. Soc., 272
- (1948).
- (13) M. Miyashita, T. Yanami, and **A.** Yoshikoski. *J.* Am. Chem. Soc.. 98, 4679 (14) G. Stork, R. Brizzoiara, H. Landesman, J. Smuszkovics. and R. Terrel, *J.* (1976).
- Am. Chem. Soc.. 85.207 11963). (15) G. N. Pyshkina. **R.** P. Evstigneeva, and N. **A.** Preobrazhenski, *Zh. Obshch.*
- (16) A. A. Chukasova, R. P. Evstigneeva, and N. **A.** Preobrazhenski, *Zh. Obshch.* Khim., 32, 3909 (1962). Khim., 32, 3544 (1962).

Concerning the Electronic Effects of Substituted Methyl Groups

William Kitching' and Vincent Alberts

Department of Chemistry, University of Queensland,

William Adcock* and Douglas P. Cox

School of Physical Sciences, Flinders Uniuersity of South Australia, Bedford Park, S.A. 5042, Australia

Received March 7, 1978

The nature of the substituent effect(s) exerted by substituted methyl groups attached to aromatic or other unsaturated systems continues to be an area of considerable interest.¹ This contribution was prompted by the recent work of Shapiro2 which purported to demonstrate that in a series of para-substituted benzyl systems, hyperconjugative interactions at the para position were of minor importance. This conclusion contrasted with persuasive evidence to the contrary, particularly that from systems in which the C-X bond was geometrically defined with respect to the π system¹ and from PES studies of benzyl systems.³

0022-3263/78/1943-4652\$01.00/0 *0* 1978 American Chemical Society

Table I. ¹³C and ¹⁹F Substituent Chemical Shifts (SCS, ppm)^a in α -Substituted 2-Methylnaphthalenes

CH ₂ X $X =$	registry no.	$C-6b$	C.7 ^b	$C-10b$	$6-Fc$	registry no.	$7.$ \mathbf{F}^d	registry no.
SCH_3	13183-61-4	-0.05	-0.38	-0.85	-0.29	66922-58-5	0.22	66922-62-1
OCH ₃	42101-92-8	0.06	0.30	-0.36	-0.25	66922-59-6	0.14	66922-63-2
NCH_3 ₂	2018-89-5	-0.23	0.13	-0.63	-0.67	66922-60-9	0.11	66922-64-3
$_{\rm Br}$	939-26-4	0.79	0.71	-0.30	1.07	581-72-6	0.73	64168-12-3
Сl	2506-41-4	0.72	0.72	-0.15	e		e	
CN	7498-57-9	0.69	0.99	-0.85	$+0.79$	66922-61-0	$1.16\,$	66922-65-4

^a Referred to the chemical shift of the appropriate carbon or fluorine in naphthalene. Positive signs indicate shifts to lower field. ^b For dilute solution in CDCl₃. ^c Solvent, benzene. 6*6* disposition. ^d Solvent, benzene. 7*6* disposition. ^e Not measured.

We consider there are certain unsatisfactory features in Shapiro's approach. First, the electronic effect of CH_2X was dissected by Taft's multiparameter treatment (DSP) with an inadequate basis of substituents. (The recommendations on a basis set of substituents have been outlined by Taft.4) Second, a worrying aspect of the analysis is that it is unclear whether Shapiro has used resonance constants $(\sigma_R^{\circ})^4$ for CHzX **(as** he should have) or for X. If the latter is the case, the analysis is invalid. Third, we feel it is necessary to comment on Shapiro's assertion that π -inductive phenomena will be manifested in ρ_1 . It is important to note that the π -inductive term5 embraces two distinct electronic mechanisms: (a) inductomesomeric effect⁶ and (b) field induced π polarization.^{7,8} The latter will emerge in ρ_I , as it is completely a function of σ _I. However, the inductomesomeric effect is not necessarily a function of σ_I and is generally more dependent on the electronegativity of $X⁹$ In addition, it is generally considered indistinguishable from mesomeric phenomena.⁶ Hence it is unclear in what term this effect will be manifested.

Our approach is based on the recent observation⁸ that the substituent chemical shift (SCS) of C-10 in 2-substituted naphthalenes is described by the following (eq 1):

 $SCS = 0.41\sigma_I + 11.23\sigma_R^{\circ}$ (C-10; DCCl₃) (1)

Clearly the C-10 SCS is dominated heavily by resonance.16 We successfully employed this equation for determining the σ_R ^o constants of metalloidalmethyl groups.¹⁰

We have prepared and examined the ^{13}C spectra of α -substituted 2-methylnaphthalenes ($C_{10}H_7CH_2X$) where $X = H$, Cl, Br, OCH₃, N(CH₃)₂, and CN, for dilute solutions (5-10%) wt/v) in CDCl₃. Assignments have been made by standard procedures and assisted by the "fluoro-substitution" technique 8 with certain $6-$ and 7 -fluoro derivatives. (Under the appropriate conditions, quaternary carbons, of which C-10 is one of three in $C_{10}H_7CH_2X$, can be distinguished from tertiary, i.e., protonated carbons by the contrasting signal intensities.)

The substituent chemical shifts (SCS) for C-6, C-7, and C-10 in the series are located in Table I.

The following equations (eq 2 and 3) describe the dependence of the C-6 and C-7 SCS on substituent constants⁸ and have been employed to calculate σ_I and σ_R ^o values for these substituted methyl groups.

$$
SCS = 4.01\sigma_{I} + 7.74\sigma_{R}^{\circ} (C-6; DCCI_{3})
$$
 (2)

^a W. A. Sheppard, *Tetrahedron*, 27, 948 (1971); E. T. McBee, I. Serfaty, and T. Hodgkins, *J. Am. Chem. Soc.*, 93, 5711 (1971). ^b The correlative equations employed are described in W. Adcock, J. Alste, S. Q. A. Rizvi, and M. Aurangzeb, *J. Am. Chem.* Soc., 98, 1701 (1976). For CDCl₃ solvent. d J. Hine, "Structural Effects on Equilibria in Organic Chemistry", Wiley-Interscience, New York, N.Y., 1975, p 98. *e* M. Charton, *J. Org. Chem.*, 29, 1222 (1964). *f* CH₂OH value (CH₂Cl₂) from flurophenylbicyclooctyl system (ref 7c). *g* CH₂OH value (cyclohexane) from fluorophenylbicyclooctyl system (ref 7c). W. F. Reynolds, G. K. Hamer, and A. R. Bassingdale, *J. Chem.* Soc., *Perhin Trans. 2,* 9'71 (1977). From fluorophenylbicyclooctyl system (ref 7c). CHzClz solvent. *J* From 0. Exner, "Advances in Linear Free Energy Relationships", N. €3. Chapman and J. Shorter, Ed., Plenum Press, New York, N.Y., 1971, Chapter 1, **p** 37. *k* From fluorophenylbicyclooctyl system (ref 7c). CH_2Cl_2 solvent.

Table III. σ_R ° Values

a Footnote *a* from Table II. ^{*b*} The correlative equations employed are described in W. Adcock, J. Alste, S. Q. A. Rizvi, and M. Aurangzeb, *J. Am. Chem. Soc.*, 98, 1701 (1976). ^c See ref 15.

 α Measured for dilute solutions (5-10% w/v) in CDCl₃ containing internal benzene. ^b Measured for OCH₂CH₃. $c \sigma_1$ (CH₃) -0.04 ; σ_R ^o(CH₃) = -0.13 (private communication, professor R. W. Taft).

$$
SCS = 2.85\sigma_{I} + 0.37\sigma_{R}^{\circ} (C-7; DCCl_{3})
$$
 (3)

In Table II, an assembly of σ_1 values from the present work, and literature reports, is presented.

In Table III, a similar compilation of available σ_R ^o values together with those based on the C-6, C-7, and C-10 chemical shift data is presented. The best σ_I values in Table II were employed in the C-10 SCS equation to calculate σ_R° values. The agreement between the σ_R ^o values based on different techniques is impressive.

With the availability now of σ ^I and σ ^o values in which high confidence can reside, it is possible to calculate the polar and resonance contributions to the C-4 SCS in a series of benzyl derivatives $(C_6H_5CH_2X)$ and then the calculated SCS by using the appropriate DSP equation (eq 4).¹¹ The calculated and experimental SCS can then be compared (Table IV).

$$
SCS = 4.73\sigma_{I} + 20.98\sigma_{R}^{\circ} (para; DCCl3)
$$
 (4)

It is clear (Table IV) that for all groups the resonance effect is comparable to or greater than the polar contribution. It should be further noted that the calculated net effect is in good agreement with the observed. This analysis negates Shapiro's conclusion² that resonance contributions for these groups is unimportant (with respect to the polar effect).

The question naturally arises as to why the resonance contribution of all the CH_2X groups is less than that for CH_3 (Table IV). This could be associated with a reduction in C-H hyperconjugation resulting from a localizing of the π -type orbitals of the CH_2X group due to the electronegativity of $X¹²$ However, the present data do not allow dismissal of the idea of C-X hyperconjugative electron withdrawal. Indeed, there is strong evidence from several approaches that this is a significant, if not substantial, contributing interaction. $1,3,13$ Comparison of the c_R° values of CH₂CN (-0.10) and CH₂Cl (-0.03) is of interest considering that $\sigma_I(Cl) < \sigma_I(CN)$, although the halogen electronegativity is greater. We associate this result with the special nature of the C \equiv N grouping, with polarization of the cyanomethyl substituent thus $-CH_2^{\delta\delta}$ - $-C^{\delta+}$ = N^{δ -.14} It is gratifying to note the good agreement (in absolute terms) of our $\sigma_R^o(CH_2X)$ values with those (of largely undetermined sign) based on the IR technique.¹⁵ The signs of $\sigma_{\rm R}{}^{\rm o}$ are established by our work.

Experimental Section

Compounds. The substituted 2-methylnaphthalenes were prepared by standard routes from 2-methylnaphthalene, The 2-bromomethyl- or 2-chloromethylnaphthalenes served as the immediate precursors of the other members of the series. The 6-fluor0 and *7* fluoro analogues of the parent series were obtained by the same se- quences from the 6-fluoro- or **7-fluoro-2-methylnaphthalenes.** These latter compounds were obtained in high yield by the cyclization route recently reported.¹⁰ All compounds exhibited appropriate ¹H and ¹³C spectra and had other physical properties in agreement with literature values.

Table **IV Spectra.** Proton decoupled ¹³C spectra were obtained at 67.89 MHz in the FT mode for dilute solutions *(5%* w/v) in CDC13, and referenced to internal Me₄Si. The ¹⁹F NMR spectra were obtained at 84.66 MHz on a Bruker WH-90 Fourier transform NMR spectrometer operating under proton decoupled conditions using benzene solutions containing 5% wt/wt of the substituted fluoronaphthalene and 2% wt/wt of 2fluoronaphthalene.

> Acknowledgment. The authors are grateful to the Australian Research Grants Committee for funding parts of this research and for providing access to the National NMR Center, Canberra (Director: Dr. Alan Jones), We also wish to thank Monash University for the use of their NMR facilities.

References and Notes

- (1) (a) M. Bullpitt, W. Kitching, D. Doddrell, and W. Adcock, *J. Org. Chem.*, **41,**
760 (1976); (b) W. Adcock, B. D. Gupta, and W. Kitching, *ibid.*, **41**, 1498
(1976), and references therein; (c) W. F. Reynolds, I. R. Pe B. **D. Gupta,** W. **Kitching, and D. Doddrell,** *J.* **Organomet. Chem., 102, 297**
-
- (1975).
(2) M. J. Shapiro, *J. Org. Chem.,* **42,** 762 (1977).
(3) (a) H. Schmidt and A. Schweig, *Angew. Chem., Int. Ed. Engl.*, **12,** 307
(1973); (b) H. Schmidt and A. Schweid, *Tetrahedron.,* 981 (1973).
- **(4) S. Ehrenson,** R. **T. C. Brownlee, and R.** W. **Taft, Prog. Phys. Org. Chem., 10, l(1973). (5)** R. **D. Topsom, Prog. Phys. Org. Cbem., 12, 1 (1976), and references**
- **therein.**
- **(6) M.** J. **S. Dewar and P.** J. **Grisdale,** *J.* **Am. Chem.** *SOC.,* **84, 3548 (1962). and references therein.**
- (7) (a) W. F. Reynolds and G. K. Hamer, *J. Am. Chem. Soc.*, **98,** 7296 (1976), and references therein; (b) D. F. Ewing, S. Sotheeswaran, and K. J. Toyne, Tetrahedron Lett., 2041 (1977); (c) W. Adcock and T. C. Khor, *ibid* **(1977).**
- **(8)** W. **Kitching, M. Bullpitt, D. Gartshore,** W. **Adcock, T.** *C.* **Khor, D. Doddrell, and** I. **D. Rae,** *J.* **Org. Chem., 42, 2411 (1977). (9)** W. **F. Reynolds, P. G. Mezey, and G. K. Hamer, Can.** *J.* **Chem., 55, 522**
- **(1977). (10)** W. **Adcock, D.** P. **Cox, and** W. **Kitching.** *J.* **Organomet. Chem., 133, 393**
- **(1977). (1 1)** J. **Bromilow,** R. T. *C.* **Brownlee,** R. **D. Topsom, and** R. W. **Taft,** *J.* **Am. Chem.**
- Soc., 98, 2020 (1976).
- (1 **2)** R. **Hoffman, L. Radom,** J. **A. Pople. P. v. R. Schleyer,** W. J. **Hehre, and L. Salem,** *J.* **Am. Chem.** *Soc.,* **94, 6221 (1972); L. Radom,** J. **A. Pople. and P. v.** R. **Schleyer, ibid., 94, 5935 (1972). and references therein.**
-
- **(13) K. Shudo and** T. **Okamato, Tetrahedron, 33, 1717, 1721 (1977). (14)** W. **Adcock and D. P. Cox, Tetrahedron Left., 2719 (1976), and references therein.**
- **(15) A. R. Katritzky and R. D. Topsom, Chem. Rev., 77, 639 (1977).** *(16)* **The weak apparent dependence on** σ_1 **is understandable in**
- (16) The weak apparent dependence on σ_1 is understandable within the framework of a bond polarizability model. Simple vectorial summation of **electric field components acting along the three C-C bonds about C-10 is zero.**

1,8-Bishomocubane1

Paul G. Gassman' and Ryohei Yamaguchi

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Receiued July 7, 1978

Recently, we required substantial amounts of 1,8-bishomocubane **(1)'** in connection with our continuing studies of the chemistry of highly strained ring systems. Two synthetic routes have previously been described in the literature.^{2,3} Both syntheses start with the reasonably expensive cyclooctatetraene and both involve steps which occur in low yield. We wish to report here an alternate route to 1,8-bishomocubane which utilizes benzoquinone **(2)** and 1,3-cyclohexadiene **(3)** as starting materials (Scheme I).

As shown above, p-benzoquinone **(2)** was readily converted into 2,5-dibromobenzoquinone **(4)** according to the literature procedure.⁴ Diels-Alder addition of 4 to 1,3-cyclohexadiene (3) in refluxing benzene gave 2,5-dibromotricyclo $[6.2.2.0^{2,7}]$ **dodeca-4,9-diene-3,6-dione (5)** in 81% yield.5 Irradiation of **5** for 20 min in Pyrex with a 450 W Hanovia high-pressure